SPECTRAL GAP FOR SOME INVARIANT LOG‐CONCAVE PROBABILITY MEASURES

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditionally Invariant Probability Measures

V eronique Maume-Deschamps Section de Math ematiques, Universit e de Gen eve 2-4 rue du Lievre CP 240 Suisse. Abstract Let T be a measurable map on a Polish space X, let Y be a non trivial subset of X. We give conditions ensuring existence of conditionally invariant probability measures (to non absorption in Y). We also supply suucient conditions for these probability measures to be absolutely ...

متن کامل

Spectral gap estimates for some block matrices

We estimate the size of the spectral gap at zero for some Hermitian block matrices. Included are quasi-definite matrices, quasi-semidefinite matrices (the closure of the set of the quasi-definite matrices) and some related block matrices which need not belong to either of these classes. Matrices of such structure arise in quantum models of possibly disordered systems with supersymmetry or graph...

متن کامل

Some Properties of Spectral Measures

A Borel measure μ in R is called a spectral measure if there exists a set Λ ⊂ R such that the set of exponentials {exp(2πiλ · x) : λ ∈ Λ} forms an orthogonal basis for L(μ). In this paper we prove some properties of spectral measures. In particular, we prove results that highlight the 3/2-rule.

متن کامل

Lasota-yorke Maps with Holes: Conditionally Invariant Probability Measures and Invariant Probability Measures on the Survivor Set

Let T : I ?! I be a Lasota-Yorke map on the interval I, let Y be a non trivial sub-interval of I and g 0 : I ?! R + , be a strictly positive potential which belongs to BV and admits a conformal measure m. We give constructive conditions on Y ensuring the existence of absolutely continuous (w.r.t. m) conditionally invariant probability measures to non absorption in Y. These conditions imply also...

متن کامل

Zero Entropy Invariant Measures for Some Skew Product Diffeomorphisms

In this paper we study some skew product diffeomorphisms with nonuniformly hyperbolic structure along fibers. We show that there is an invariant measure with zero entropy which has atomic conditional measures along fibers. This gives affirmative answer for these diffeomorphisms to the question suggested by Herman that a smooth diffeomorphism of positive topological entropy fails to be uniquely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2010

ISSN: 0025-5793,2041-7942

DOI: 10.1112/s0025579310001361